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Regioselective cross-coupling of allylindium reagents
with activated benzylic bromides—a simple and efficient

procedure for the synthesis of terminal alkenes
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Abstract—Allylindium reagents undergo facile and highly regioselective cross-coupling with benzylic and cinnamyl bromides in
THF at room temperature without any catalyst producing terminal alkenes in high yields. The addition is highly regioselective
and is found to provide c-adducts in all reactions.
� 2007 Elsevier Ltd. All rights reserved.
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The allylation of an organic substrate is a very useful
process as it provides a double bond, which can be fur-
ther functionalized.1 The most frequently used methods
for allylation include addition of allylsilanes2 or allylst-
annanes3 to organic electrophiles catalyzed by Lewis
acids. However, the difficulties associated with the prep-
aration of regiochemically defined allylstannanes, their
tendency to undergo allylic isomerization, removal of
tin from the product, and finally the toxicity of tin, re-
strict the use of allylstannanes as nucleophilic coupling
partners.3b Allylsilanes are also not very user-friendly
being volatile. Allyl-magnesium and -lithium reagents
are also used for allyl transfer to alkyl chains by halo-
gen–metal exchange, however, these reagents show low
functional group tolerance.4

Organoindium reagents are of considerable interest in
organic synthesis because of their environmentally
benign characteristics and their synthetic utility for
carbon–carbon bond formation.5 As part of our
continued activities in the area of indium-mediated reac-
tions6 we are investigating novel applications of organo-
indium reagents in organic synthesis. Previously, we
have described the indium mediated homocoupling of
alkyl and aryl halides.6a Here, we demonstrate the regio-
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selective cross-coupling of allylindium reagents with
benzyl bromides leading to terminal alkenes (Scheme 1).

The experimental procedure is very simple.7 A mixture
of the benzyl bromide and allylindium reagent, prepared
in situ from the reaction of indium metal and allyl bro-
mide in THF, was stirred at room temperature until
completion of the reaction (TLC). Workup and purifica-
tion then provided the pure product. The products were
characterized from their spectroscopic (IR, 1H, and 13C
NMR) data.

Several substituted benzylic bromides underwent cross-
coupling reactions with a variety of allylindium reagents
at room temperature to produce the corresponding ter-
minal alkenes, Table 1. As is evident from the results
in Table 1, c-addition products were obtained from
the reactions of all the substituted allyl bromides (entries
3, 5, 6, 9, 10, 19, 20, and 22) although in principle, there
was the possibility of formation of two products arising
from a- and c-attack. The coupling reaction was found
RBr + R
In, THF

rtR1 Br

R = benzyl, R1= H, Me, CO2Me

Scheme 1.
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Table 1. Cross-coupling of organoindium reagents with benzyl bromides

Entry RBr R1 Product Time (min) Yielda (%) Ref.

1 Br H 90 75 10

2 Br

Me

H

Me

60 80 10

3 Br

Me

Me

Me

Me

60 70 11

4 Br

Ph

H

Ph

20 90 10

5 Br

Ph

Me

Ph

Me

30 80 12

6 Br

Ph

CO2Me

Ph

CO2Me

60 85 13

7

Cl

Br
H

Cl

120 70 14

8

MeO

Br
H

MeO

30 90 15

9

MeO

Br
Me

MeO
Me

45 80 16

10

MeO

Br
CO2Me

MeO
CO2Me

30 90 —

11
Br

OMe

H

OMe

40 85 19

12

Br

OMe

H

OMe

85 78 20

13
Br

Me
H

Me

45 85 19

14
Br

O2N
H

O2N
240 30 21

15

Br

NO2

H

NO2

240 37 —
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Table 1 (continued)

Entry RBr R1 Product Time (min) Yielda (%) Ref.

16
BnO

Br

H

BnO

15 90 —

17

Br

O
O

H

O
O

15 92 17

18 O

Br

H O 20 90 —

19 O

Br

Me O
Me 35 80 —

20 O

Br

CO2Me O
CO2Me 60 85 —

21 O

Br

H O 30 86 —

22 O

Br

Me O
Me

40 80 —

23
Br

H 25 85 18

24

Br

OMe

H

OMe

20 90 22

a Yields refer to those of pure isolated products fully characterized by spectroscopic data.
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to be more facile when an electron donating group was
present at the para-position of the aromatic ring of the
benzylic bromides (entries 8–10, 13, and 16–22) com-
pared to unsubstituted (entry 1) and more particularly,
electron withdrawing group-substituted benzyl bro-
mides (entries 7, 14, and 15). The ortho-electron donat-
ing substituted benzyl bromide (entry 11) also reacted
in the same way as p-substituted examples. The reac-
tions of m-methoxy-substituted benzyl bromide (entry
12) and cinnamyl bromide (entry 24) were comparable
with their unsubstituted counterparts. However, ali-
phatic bromides remained virtually inert as was found
by reaction with n-pentyl bromide; even after heating
for 10 h at 70 �C, the reaction only proceeded margin-
ally (10%). Both primary and secondary benzyl bro-
mides participated in this coupling reaction. Several
functional groups present on the aromatic ring of the
benzylic bromides, such as Cl, OMe, OBn, dioxymethyl-
ene, allyloxy, and propargyloxy remained unaffected
under the reaction conditions.

In general, the reactions were very clean, fast, and high
yielding. No Lewis acid catalysts, as usually employed
for allylation reactions, were required in this procedure.
The facile addition of c-bromocrotonate to benzyl bro-
mides provides an easy access to important substituted
b,c-unsaturated carboxylic esters (entries 6, 10, and
20). The highly selective c-addition products provided
by this reaction offer advantages over other existing pro-
cedures, which give mixtures of products.2–4
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As is evident from the results, this cross-coupling reac-
tion is very much influenced by the electronic effects of
the substitutents on the benzyl bromides. Thus, for a
better understanding of the transition state, a Hammett
correlation diagram has been drawn plotting r (substit-
utent constant) values of different substituents versus
log I (I = ratio of signal intensity of product with that
of starting material after a certain period of time). The
plot shows a negative slope (q) of �1.956 (Fig. 1), which
indicates the involvement of a partial benzylic carbocat-
ion type intermediate. As the q value of a typical SN1
reaction is approx. �4.5,8 here the reaction is neither a
typical SN1 nor a classical SN2 process. Thus, a full po-
sitive charge at the benzylic carbon is unlikely for this
reaction and a non-classical and non-concerted cyclic
transition state (A) is thus postulated (Scheme 2), which
favors c-addition. This mechanism explains the facile
reaction with an electron donating substituent, which
stabilizes the benzylic carbocation favorably compared
to an electron withdrawing group or with no substitu-
tion. This also gains support by the inertness of the alkyl
bromide, which fails to provide sufficient stabilization of
the carbocation to allow the reaction to progress.

In conclusion, the present procedure provides a novel
protocol for the synthesis of terminal alkenes via highly
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Figure 1. Hammett plot.
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Scheme 2. A possible mechanism for the regioselective cross-coupling reacti
regioselective addition of benzyl bromides to allylindi-
ums. We are not aware of any report addressing the cat-
alyst-free cross-coupling of benzyl bromides and
allylindiums, although similar Pd-catalyzed couplings
of allylindiums with aryl halides have been reported.9

Moreover, this procedure offers marked improvements
with regard to operational simplicity, short reaction
times, general applicability to substituted allylindiums,
excellent regioselectivity, no requirement for a catalyst,
and typically high isolated yields (75–95%). We believe,
this reaction will find suitable applications in organic
synthesis.
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